Gas Power Cycles

      BRAYTON CYCLE: THE IDEAL CYCLE FOR GASTURBINE ENGINES The combustion process is replaced by a constant-pressure heat-addition process from an external source, and the exhaust process is replaced by a constant-pressure heat-rejection process to the ambient air. 1-2 Isentropic compression (in a compressor) 2-3 Constant-pressure heat addition 3-4 Isentropic expansion (in a turbine) 4-1 Constant-pressure heat rejection 3 The two major application areas of gasturbine engines are aircraft propulsion and electric power generation. The highest temperature in the cycle is limited by the maximum temperature that the turbine blades can withstand. This also limits the pressure ratios that can be used in the cycle. The air in gas turbines supplies the necessary oxidant for the combustion of the fuel, and it serves as a coolant to keep the temperature of various components within safe limits. An air–fuel ratio of 50 or above is not uncommon. 4 Development of Gas Turbines 1. Increasing the turbine inlet (or firing) temperatures 2. Increasing the efficiencies of turbomachinery components (turbines, compressors): 3. Adding modifications to the basic cycle (intercooling, regeneration or recuperation, and reheating). Deviation of Actual Gas-Turbine Cycles from Idealized Ones Reasons: Irreversibilities in turbine and compressors, pressure drops, heat losses Isentropic efficiencies of the compressor and turbine                

Unlock Your Academic Potential with Our Expert Writers

Embark on a journey of academic success with Legit Writing. Trust us with your first paper and experience the difference of working with world-class writers. Spend less time on essays and more time achieving your goals.

Order Now